Полёт на марс: факты, опасность, прогнозы

Оглавление

Среднее время перелета

Время в пути не зависит от технических достижений. Для его определения нужно выполнить сложные математические расчеты и анализ орбит небесных тел. Если среднее расстояние между планетами принять за 225 млн км, совершая полет со средней скоростью самолета (1000 км/ч), лететь придется 22000 дней. Это более 60 лет. Но можно задействовать самый быстрый космический аппарат, который преодолеет дистанцию за 39 дней. Его скорость достигает 58000 км/ч.

Единого маршрута и времени его преодоления нет. В течение года все планеты занимают различные места на своих орбитах, что изменяет расстояние между ними. Перелет на Марс со скоростью света (свыше 299 млн км/ч) займет от 3 до 22 минут. Однако самый скоростной корабль «Voyager-1» способен передвигаться на скорости 62140 км/ч, и к перевозке пассажиров он не приспособлен.

Полёты на Марс – это исследовательские миссии, проводимые с 60-х годов XX века без экипажа при помощи марсоходов и орбитальных станций. Credit: versiya.info.

На ракете современного уровня развивается скорость до 8350 км/ч. Такими темпами длительность полета составит 6586 часов. Это около 274 дней при минимальной удаленности Марса от Земли. При максимальном расстоянии продолжительность путешествия продлится до 5,47 лет. К этому сроку нужно прибавить время на обратную доставку космонавтов.

Способен ли долететь человек

Перед организаторами миссии стоит проблема послать корабль туда и вернуть его обратно. Чем быстрее он полетит, тем лучше. Минимальная скорость должна составлять 18000 км/ч. Если учесть период сближения планет, который длится около 500 дней, понадобится минимум 33 земных месяца на совершение путешествия на Марс. В пути космических путешественников ждут опасности:

  • радиация;
  • изоляция;
  • длина маршрута;
  • гравитационные поля;
  • ограниченное пространство и др.

Космическая радиация приносит большой вред человеческому здоровью. Никто не может предсказать результаты ее воздействия. Изоляция в течение длительного времени приводит к нарушению сна, перепадам в поведении и в отношениях между участниками космической экспедиции.

Космос — не место для проживания людей. Нужно приложить много усилий для создания комфортных условий на корабле. Половину пути аппарат будет преодолевать на максимально возможной скорости, затем начнет торможение для осуществления мягкой посадки.

Оказавшись на поверхности Красной планеты, звездолетчик не может ждать быстрой помощи с Земли. Еще не изучены последствия влияния земной, космической и инопланетной гравитации на организм.

Человек получит огромную дозу радиации еще на пути к Марсу. Credit: discover24.ru

Еще одна трудность пребывания человека на Марсе — недостаток воздуха. В атмосфере Красной планеты 96% углекислого газа, поэтому передвигаться всегда нужно с дыхательным аппаратом. Частые песчаные бури способны разрушить оборудование и жилье землян, убить самих космонавтов. Угрозу представляют различные пока неизвестные заболевания.

Расход топлива

Инженеры предлагают совершать полет на аппаратах с ядерными двигателями. Для них требуется водород в количестве 6 тонн. На обратный путь планируется применить диоксид углерода, который имеется на Красной планете. Вода расщепляется на водород и кислород, которые расходуются для дыхания и получения метана. Множество нюансов затрудняют точный расчет требуемого на путешествие запаса топлива.

Интерес представляет идея подогрева и ионизации топлива радиоволнами. Результат процесса — плазма. Она дешевле ядерного топлива.

Сколько суток продолжается полёт до Марса

Продолжительность экспедиции, а именно, сколько суток примерно продолжается полёт до Марса, зависит от: двигателя корабля, суммарного веса космолёта с грузом, скорости движения, расстояния между небесными телами в разные годы, траектории движения. О том, сколько времени займёт полёт до Марса, можно судить по прошедшим отправкам.

Продолжительность полёта космических аппаратов на красную планету:

  • Первое путешествие продолжительностью 229 дней совершила автоматическая станция МКС Mariner-4 в 1964 году.
  • Самое быстрое путешествие совершил корабль Новые горизонты. Его скорость составила 58 тыс. км/ч. Удалось это благодаря отсутствию тяжёлого технического оснащения. Путь корабля налегке продолжался 78 суток.
  • Дольше всего добирался до пункта назначения Mars Полар Лэндэр, его путь занял 334 дней.
  • Викинг-1 первый космический аппарат, который успешно вошел в орбиту, а затем совершил посадку на Марсе в 1975 году. Время в пути– 304 дня.
  • Марс Одиссей – орбитальный аппарат отправлен на Марс в 2001 году. Работает околомарсианской орбите дольше всех. Время в пути – 200 суток.
  • Американскому посадочному модулю Феникс, потребовалось 294 дня. Его достижением стало впервые осуществлённое бурение на планете.
  • Марсоход Curiosity – представляет собой автономную химическую лабораторию. Намного тяжелей и больше своих предшественников. Кьюриосити был отправлен в космос 26 ноября 2011 года. 6 августа 2012 года вошел в орбиту планеты. Время в пути – 253 суток.
  • Новейшая американская станция Инсайт добралась за 205 дней.
  • Европейскому Trace Gas Orbiter потребовалось 229 суток. Отправлялся он с космодрома Байконур.
  • Марс Глобал Сервейор, отправившийся с мыса Канаверал, уложился в 308 земных суток.

Программа Mars one

На данный момент уже существует реальная космическая программа полета астронавтов на Марс, под названием «Mars one». Согласно ей планируется, что первая группа землян отправится на покорение Марса в 2025 году. А затем каждые два года к ним будут присоединяться новые группы поселенцев. Но что самое интересно, так это то, что для будущих марсианских первопроходцев их полет на Марс станет «билетом в один конец». Да, они, к сожалению, не смогут вернуться на Землю по причине описанных выше трудностей полета – из-за ограниченного запаса топлива и увеличения расстояния между нашими планетами.

Кроме этого, из-за длительного пребывания на «красной планете» у них со временем атрофируются некоторые мышцы, дело в том, что сила гравитации на Марсе гораздо меньше, чем на Земле. Скажем, человек имеющий вес 100 кг, на Марсе будет весить всего лишь 38 кг.

Несмотря на все эти обстоятельства более 20 тысяч человек подали заявки на участие в программе покорения красной планеты «Mars one». Из них предварительно было отобрано 1058 человек для возможного участия в программе. А Вы бы хотели отправится на Марс?

Стоимость лунных высадок

Миссия на Марс является лишь частью общей новой программы пилотируемых космических исследований NASA, которая, по оценкам аналитиков, обойдется США к 2037 году примерно в 217,4 миллиарда долларов. Эти деньги собираются потратить не только на полеты к Марсу, но и на проекты на околоземной орбите, а также на разработку элементов марсианской инфраструктуры, которые потребуются в дальнейших миссиях американского агентства.

Здесь же в бюджет включена и серия миссий по высадке на лунную поверхность. Отчет прогнозирует, что первая высадка человека на Луну состоится в 2028 году – именно на эту дату рассчитывало само NASA до заявлений новой Администрации США, которая поставила перед агентством задачу вернуть американских астронавтов на спутник Земли уже в 2024 году. Далее агентство рассчитывало проводить по одной пилотируемой миссии к Луне вплоть до 2032 года.

Документ проводит оценку трехступенчатой системы, которую NASA собирается использовать для пилотируемых полетов к Луне. Ее устройство агентство представило в прошлом году. Тогда речь шла об использовании систем с многоразовой первой ступенью, космическим аппаратом и расходными ступенями для посадки на поверхность Луны. С учетом этого, документ указывает, что посадочные модули и система дозаправки обойдется агентству в 8 миллиардов долларов. Такие затраты позволят провести серию из нескольких пробных беспилотных миссий, а также пяти пилотируемых посадок на спутник. Дополнительные 12 миллиардов долларов придется потратить на запуски SLS, космических аппаратов «Орион», а также другие миссии по доставке посадочных модулей, топлива и других грузов на спутник. Указывается, что в озвученные цифры не включена стоимость самой разработки SLS, «Ориона» и станции Gateway.

В дополнение к этому специалисты STPI сообщают, что согласно их оценке, стоимость первой высадки на Луну обойдется NASA примерно в 2,44 миллиарда долларов. Эти деньги пойдут как на сами запуск, так и на разработку необходимого для него оборудования. Еще несколько миллиардов потребуется потратить на создание посадочных модулей.

Обсудить статью можно в нашем Telegram-чате.

Условия жизни на Марсе

9. В случае болезни, вы будете находиться на расстоянии 362 миллионов км от Земли

Хотя у космонавтов будут необходимые средства для оказания помощи при распространённых травмах и болезнях, определённые заболевания будет достаточно трудно или практически невозможно лечить.

10. Вы всегда можете заразиться чем-то неизвестным на Марсе

Перед каждой миссией на Марс ученые предпринимают все усилия для дезинфекции марсоходов, чтобы бактерии с Земли не попали на Марс.

Однако в случае заражения космонавтов на Марсе, земляне вряд ли примут (если б это было возможно) их обратно, так как это может привести к распространению неизведанной внеземной эпидемии.

11. Вы больше не попробуете свои любимые блюда

Организаторы планируют, что колонизаторы будут выращивать на Марсе овощи. Так как количество еды, привезенной с Земли, будет ограничено, они в основном будут питаться тем, что вырастят, как например, шпинатом, салатом латук и соевыми бобами.

Полет в один конец! Самое интересное впереди!

Компания Mars One намерена направить на Красную планету группу астронавтов не просто в полет по орбите, а для того, чтобы те построили на марсианской земле первую колонию-поселение. Вот только для первопроходцев это путешествие будет в один конец. Они никогда больше не увидят родных, близких, друзей, не поговорят с ними по телефону и даже не смогут использовать Интернет.

Несмотря на устрашающее будущее все же нашлось более двухсот тысяч смельчаков, которые подали заявки на участие в миссии. Проектом было отобрано порядка тысячи пятидесяти восьми претендентов. Из них первые четыре победителя подготовительного этапа отправятся на планету в 2025. Затем, каждые два земных года к ним будут присоединяться и другие марсонавты.

Но все это – лишь общие слова. А что же на самом деле ждет тех, кто отправится в неизведанность? И как изменится мнение каждого из нас, кто хотел до сего момента оказаться на их месте, когда мы узнаем о предстоящих испытаниях?

Этапы полета к Марсу – активный и пассивный участок полета космического корабля

Если кто-то думает, что полет на Марс происходит как в фантастических фильмах, где космический корабль двигается к цели за счет тяги собственных реактивных двигателей, то спешу вас огорчить – в жизни все происходит куда “суровей”.

Дело в том, что несмотря на семимильные шаги технического прогресса, двигатели современных космических ракет еще слишком несовершенны, очень “прожорливы” и потому применяются только на сравнительно небольших участках полета. Да и то, главным образом для коррекции направления полета, а не для придачи ускорения.

В основном же “космическим штурманам” прокладывающим маршруты к планетам, приходится прибегать к силам природы – чаще всего к силе тяготения Солнца. В связи с этим межпланетную траекторию можно условно разделить на участки двух видов.

Первый из них — это активный участок траектории полета, полет на котором совершается с работающими двигателями. Таких участков может быть несколько по пути следования космического аппарата.

В заранее рассчитанное время включаются двигатели разгонного ракетного блока, и межпланетный корабль стартует с околоземной орбиты.

Как видно из рисунка объясняющего «гравитационные маневры» аппарата Фобос-Грунт для изучения Марса, о полетах по прямой космонавтам приходится только мечтать

Для достижения планеты назначения траектория полета должна быть рассчитана таким образом, чтобы после выхода из сферы действия Земли и попадания в поле тяготения Солнца наш корабль продолжал бы полет в намеченную точку до встречи с другой планетой.

С одной стороны, траектория космического аппарата определяется начальной скоростью и направлением движения (в момент старта с околоземной орбиты) космического корабля, с другой — притяжением самого Солнца. На полет также оказывают некоторое влияние планеты и их спутники — они своей гравитацией отклоняют его от расчетного пути. Но отклонения эти невелики и легко поддаются устранению путем кратковременного включения на трассе полета корректирующих ракетных двигателей.

Для выхода космического корабля на расчетную траекторию полета к Марсу ему необходим скорость не менее 11,6 км/с, то есть чуть больше второй космической скорости, что позволяет космическому кораблю “выскочить” за пределы гравитации нашей планеты.

Как только нужная скорость достигнута, начинается длительный полет с выключенными двигателями по второму, пассивному участку межпланетного полета.

Иными словами, космическому кораблю нужно “вырваться” из гравитационных “объятий” Земли с помощью двигателей, а дальше  полет межпланетного корабля происходит уже в основном по инерции, за счет тяготения Солнца.

Эта же сила формирует и межпланетную траекторию. Если скорость “отрыва” будет недостаточна для преодоления тяготения Земли, объект не полетит к другой планете, а перейдет на околосолнечную эллиптическую орбиту. То есть станет вращаться вокруг Солнца как его искусственный спутник.

Википедия о полете на Марс

Википедия сообщает, что первые серьезные планы организации полетов на красную планету начали строиться перед программой «Аполлон». В СССР эти вопросы поднимались в 70-х, но приоритет был отдан попыткам освоения Луны. В те годы марсианская экспедиция не произошла.

Программа «Аврора» и «Созвездие»

В настоящий момент ЕС реализует программу «Аврора», в рамках которой запланировано достигнуть данной цели к 2033 году. НАСА, сотрудничая с ЕС, развивает программу «Созвездие», предполагающую, что человек посетит Марс к 2037 году. Интересно то, что промежуточный этап «Созвездия» — построение постоянно действующей базы на Луне.

Полет к Фобосу

Россия до 2015 года рассчитывала реализовать непилотируемый полет к марсианскому спутнику – Фобосу. Однако первый вылет космического аппарата в 2011 году прошел неудачно из-за внештатной ситуации. Дальнейшие запуски запланированы на 2020-2021 годы.

Полет аналога Saturn-V на Марс

Интерес представляет план полета, подготовленный Робертом Зубиным. Он включает в себя использование космического аппарата, аналогичного по своим возможностям ракете Saturn-V. Основной источник энергии – компактный ядерный реактор. С Земли корабль транспортирует с собой 6 тонн водорода. Также будет задействован диоксид углерода, находящийся в атмосфере Марса. Благодаря энергии реактора из этих компонентов будет изготавливаться метан и вода. Воду предполагается разлагать электричеством, а полученный водород расходовать на выработку метана и воды. В итоге удастся изготовить более 100 тонн топлива, чего хватит на сам полет, возвращение и работу техники на поверхности «красной планеты». Предполагается, что вне Земли космонавты проведут более 1,5 лет.

Что такое космическое излучение?

Главной опасностью космоса является проходящее сквозь него излучение. Больший вред человеческому организму могут нанести галактические и солнечные лучи. Первые возникают при вспышках сверхновых и прилетают в Солнечную систему извне. Такие вспышки возникают раз в 30-50 лет, но звезд во Вселенной очень много, поэтому поток галактических космических лучей никогда не останавливается и имеют очень высокую энергию. Солнечные лучи возникают при возникновении вспышек на Солнце и тоже имеют определенную энергию, но более низкую.

Космическая радиация губительна для человеческого организма

Интенсивность каждого типа изучения напрямую зависит от активности Солнца. При ее высокой активности возникает больше солнечного излучения, но в ходе этого процесса в окружающем пространстве (в который входят Земля и Марс) образуется гелиосфера — оболочка, которая защищает нас от галактических лучей. Ученые считают, что так как солнечные лучи обладают меньшей мощностью лучше, если на космических путешественников будут воздействовать они, чем мощное галактическое излучение.

Визуализация гелиосферы

Сколько лететь по времени до Марса со скоростью света?

Скорость света – верхний скоростной предел во вселенной. Она равняется почти 300 000 километров в 1 секунду. Это утверждение тоже обосновал вышеупомянутый Альберт Эйнштейн.

Данный рубеж может интересовать нас по двум причинам:

  • быстрее разогнаться (а значит — оперативнее добраться до Марса) никак не выйдет;
  • свет в перспективе может сам по себе являться переносчиком информации.

Если мы достигнем скоростного совершенства, то долететь до Марса или передать сообщение получится за 3 минуты и 7 секунд

В таком случае уже не важно, когда вылетать. При самом медленном варианте путешествие не превысит 22 минут

Используя ядерный двигатель можно будет еще посетить другие близлежащие планеты, т.к. энергии на это хватит с лихвой.

Влияние приливов и отливов на дистанцию

По мнению команды японского астрофизика Такахо Миура, расхождение рассматриваемых космических объектов объясняется приливным взаимодействием. Невзирая на малые размеры планеты относительно Солнца, она должна порождать в теле звезды приливы, т. к. более близкие участки светила притягиваются немного сильнее, чем дальние. Подобные приливы передвигаются по поверхности и тормозят вращение объекта. Поскольку полный момент импульса системы Земля-Солнце сохраняется, происходит незначительное расширение гелиоцентрической орбиты.

Аналогичным образом взаимодействуют Земля и Луна. Отклонения орбиты спутника вызывают на планете ежедневные океанические приливы, что приводит к удлинению суток на 1,7 мс за столетие. При этом расстояние между объектами увеличивается на 4 см ежегодно.

Возможен ли полет на Марс со скоростью света

Скорее всего, такой вопрос посещал вас во время чтения статьи. Напомним, что данная величина составляет 299 792 км в секунду или 1 миллиард километров в час. А это значит, что солнечные лучи, отраженные от поверхности Марса, достигнут нашей планеты:

  • при «оппозиции» – за 3 минуты;
  • при среднем расстоянии – в течение 12,5-13 минут;
  • при минимальном сближении – около 22 минут.

Поскольку, не существует другого предела скорости, с которой могут перемещаться земляне, кроме скорости света, давайте представим, что нам все-таки удалось миновать проблемы, связанные с возведением ультраскоростных ракет и космических кораблей. Однако, в таком случае, перед нами постает куда более серьезнее проблема. Дело в том, что человеческое тело, состоящее в основном из воды, не готово к столь серьезным испытаниям скоростью.

И даже, если человечество откроет физический закон, способный придать нам такое ускорение, необходимо понимать, что нам придется и быстро набирать скорость, и так же моментально ее снижать. А подобные колебания представляют смертельную опасность для хрупкого организма человека. Могут наблюдаться: обмороки, частичная или полная потеря зрения и другие симптомы. Многие из них знакомы авиапилотам. Более того, даже известны летальные случаи, когда пилоты разбивались из-за черной пелены перед глазами или потери сознания.

На каком расстоянии находится планета в световых годах

Чтобы определить расстояние между планетами в световых годах, стоит рассмотреть несколько основных понятий и особенностей.

Понятие светового года используется в астрономии редко. В 2008 году частично изменили определение, но принцип остался тем же.

Световые года измеряются в метрах, поэтому значение используется для определения огромных расстояний.

Что стоит учесть при определении расстояния в световых годах:

  1. Стоит учитывать расстояние каждой орбиты. Чаще берут среднее значение: 225 миллионов километров или 225×〖10〗^9 метров.
  2. 1 световой год приблизительно 9.46×〖10〗^15 метров.
  3. Выполняется математическое исчисление: (225×〖10〗^9)/(9,46×〖10〗^15 ). Получаем 23,8×〖10〗^(-6) лет.

Определение расстояния между Землей и Марсом в световых годах является некорректным, чаще используют именно парсеки и их производные.

Другие единицы измерения не входят в официальную систему измерения.

Реальное испытание для нервов

Наше упоминание о вероятной психической нестабильности, грозящей каждому космонавту в полете – вполне себе реальная угроза. На российской платформе был реализован проект Марс-500. В нем приняли участие шесть космонавтов, из которых четверо за пятьсот двадцать дней пребывания в замкнутом пространстве показали развитие депрессивного состояния. Начались проблемы со сном

У одно человека даже на почве хронического недосыпания пострадали внимание и способность к концентрации

На самом деле пока еще никто из астронавтов не проводил столько времени в космическом пространстве. Да еще и без связи и прочих условий, максимально приближенных к привычной комфортной жизни пусть и в невесомости. Не разрешается больше полугода находиться на МКС уже потому, что происходит потеря костной и мышечной тканей.

Напомним, марсонавтам придется провести в полете более двухсот дней – больше, чем полгода.

Какие технологии нужны, чтобы сократить полёт на Марс

В длинных путешествиях есть плюсы, если они не длятся годами. Существует два реальных способа сократить полёт до Красной планеты: камеры гиперсна и инновационные двигатели. Камеры гиперсна, конечно, не поглощают время, а лишь облегчают восприятие человека, создавая иллюзию более незначительного по времени полёта. Второй способ — новые двигатели, которые доставят космонавтов в считанные дни.

Камеры гиперсна

Учёные продолжают думать о том, как сделать путешествие на Марс комфортным для астронавтов. Компанией Spaceworks при поддержке NASA придумано использовать камеры гиперсна. Космонавт уснёт и не заметит, как прошло несколько месяцев. В фильмах такое часто показывают, сейчас можно утверждать это больше не фантастика. Конечно, сам полёт короче не станет, но убережёт людей от серьёзных психологических проблем. В гиперсне температура тела понижается, как и обмен веществ. А также частично решится проблема атрофии мышц. Существуют примеры применения гиперсна на 14 дней без негативных последствий для мозга. Снижать температуру тела планируется с помощью медикаментов.

Полёт на Марс за 45 дней

Росатом совершил амбициозное заявление о строительстве ядерного двигателя, способного достичь Марса за 45 дней. Как отмечают учёные, создать сам двигатель — не так дорого и проблематично, как спроектировать космолёт вокруг него. Принцип работы двигателя будет основан на химической тяге. Проект запланировано реализовать к 2025 году и потратить на это примерно 15 миллиардов рублей, что составляет 700 миллионов долларов. В сравнении с американскими проектами, это дёшево. В Америке тоже разрабатывают ракетные двигатели, но, в отличие от российских, они приводятся в действие электричеством. Разработку ведёт компания Ad Astra Rocket Company.

Опасность космической радиации

Но даже в «безопасные» периоды солнечной активности космическая радиация будет воздействовать на космический корабль и находящихся внутри людей. Десяток лет назад на примере животных ученые уже выяснили, что мощные галактические лучи могут разрушать структуру ДНК. Допустим, если космические частицы будут проходить через головной мозг астронавтов, они будут убивать нейронные клетки. В конечном итоге это может стать причиной возникновения необратимых нарушений в поведении членов экипажа. Если такое произойдет, миссия по отправке людей на Марс может быть провалена — внутри корабля даже может возникнуть убийственный конфликт.

Марс (не)красный!

Часто Марс  называют «Красной планетой», в связи с красноватым оттенком поверхности, придаваемого ей оксидом железа.

Но, в Интернете давно обсуждается тема фальсификации американскими учёными настоящего цвета изучаемой планеты. Приводятся множество доказательств того, что многие снимки, сделанные NASA, подверглись цветовой коррекции.

Так, самая первая в истории человечества цветная фотография Марса, полученная летом 1976 года, изначально была похожа на земной снимок. Но, через несколько часов NASA обновила фото, сделав небеса оранжевыми, а грунт красным.

Спустя почти 20 лет снимки с марсохода Spirit также подвергаются цветокоррекции. Легко обнаружить, что нам показывают неправильно откалиброванные по цвету фотографии марсианской поверхности. Синий цвет на снимках превращается в красный, а зелёный практически исчезает.

Журналисты проводили собственные расследования, доказывая, что NASA зачем-то скрывает натуральный цвет на Марсе. Даже если посмотреть на официальные фотографии агентства становится очевидно, Марс не такой и красный.

Марсианская атмосфера

Марсианская атмосфера находится в крайне разряженном состоянии – порядка процента от земной. Девяносто шесть процентов воздуха Марса составляет углекислый газ с незначительными вкраплениями кислорода. Так что выйти подышать свежим воздухом у марсонавтов не получится.

Но испытания на этом не заканчиваются. На планете случаются страшные песчаные бури. Они могут длиться от нескольких часов до нескольких дней и накрывать практически всю планету. Песок, поднимающийся в это время, может оказаться очень токсичным для человеческого организма. Так что, если захочется прогуляться, то сделать это можно в спокойную погоду и только в скафандрах.

Какое же расстояние нужно преодолеть при полете от Земли до Марса?

Ответ на вопрос «сколько лететь до Марса по времени?», как этот ни покажется странным, не имеет однозначного ответа (ведь по теории Эйнштейна все относительно — и расстояние, и время). Все дело в том, что и наша Земля, и Марс, и другие планеты (звезды и другие космические тела) находятся в постоянном движении по своим орбитам и расстояния между планетами постоянно изменятся в определенной последовательности. Так, расстояние между Землей и Марсом постоянно изменяется в довольно широком диапазоне дистанции — от 55 млн. до 400 млн. километров. Также и диапазон времени или периодов такого сближения тоже довольно значителен (от 80 лет при максимальном сближении до 2 годового периода). Это связано с тем, что циклическое движение по эллипсоидным орбитам планет в разные моменты времени определяет текущее расстояние. Наибольшее или наименьшее значение, т.е какое расстояние от Земли до Марса в данный момент времени получается в моменты расхождения или в момент схождения траекторий движения планет.

Что касается Земли и Марса, то такие периоды взаимного максимального сближения и удаления имеет значение около 80 лет. Т.е 1 раз в 100 лет обе планеты сближаются на минимально возможное расстояние от Земли до Марса в километрах (38 млн км.). Для сравнения – среднее расстояние от Земли до Луны составляет всего 280 000 км.

Однако есть и более короткие периоды такого сближения — один раз в два года, когда расстояние между Землей и Марсом составляет всего каких-то 57—58 млн. километров. Это расстояние можно в принципе считать исходной точкой для определения времени необходимого, чтобы долететь до Марса.

Расстояние между Землёй и Марсом (в а. е.) во время противостояний 2014—2061 гг.

Метод параллакс: измерение расстояния между планетами

Самым доступным расчетом длины пути между космическими телами, которым пользуются даже ученики в школах – это тригонометрический метод параллакса. Данный способ описывается в программе по геометрии. Суть состоит в следующих действиях:

• На земле берутся две точки, между ними проводится отрезок, именуемый базисом.
• На небе определяется звезда, до какой необходимо узнать расстояние. Она является вершиной воображаемого треугольника.
• Следующим шагом станет измерение углов между отрезком, проведенным на поверхности земли и двумя прямыми линиями, идущими от точек и до небесного тела.
• Потому как протяженность отрезка и два угла треугольника известны, остальные расчеты не составят труда.

Для определения углов треугольника, необходимо осознавать, что его величина напрямую зависит от базиса. Дистанция до планеты слишком велика, и если взять относительно небольшую длину отрезка на поверхности земли, то угол будет слишком маленьким. По этой причине берутся максимально отдаленные точки.

Ранее, при расчетах, в качестве базиса выступал радиус планеты Земля. Таким образом в роли наблюдателей выступали два астронома, которые измеряли угол между базисом и верхней точкой треугольника. Более поздние измерения проводились на основе радиуса орбиты Земли (он был базисом). Данный прием дал возможность измерения расстояния до удаленных объектов.

Как защитить космонавтов от радиации?

Исходя из этого следует, что даже в период высокой солнечной активности и наличии защитной гелиосферы, длительность миссии по полету на Марс должна быть ограничена во времени. Чтобы выяснить оптимальную длительность программы, ученые прибегли к компьютерному моделированию. Они создали виртуальную модель человека и поместили его в условия с наличием космической радиации. Информация о ее интенсивности не была взята с воздуха, потому что ученые использовали данные о солнечной активности за период с 1997 по 2014 год. По данным научного издания Space Weather, эксперимент показал, что длительность космической миссии не должна превышать четырех лет. В противном случае космическое излучение может нанести путешественникам непоправимый урон по здоровью.

Полет на Марс не должен быть дольше четырех лет

Конечно, ситуацию может спасти правильная обшивка космического корабля, которая максимально защищает от радиации. Было бы логично предполагать, что корпус корабля должен быть максимально толстым, но ученые в этом не уверены. В ходе изучения смоделированной обстановки выяснилось, что защитная оболочка корабля должна быть средней — если она будет толще обычного, опасные частицы смогут накапливаться в его структуре и медленно убивать членов экипажа. В конечном итоге получается, что для безопасного полета на Марс нужно:

  • летать в период высокой солнечной активности;
  • сделать это в течение четырех лет;
  • летать на обычном корабле, без дополнительных слоев защиты от радиации.

Полет на Марс — это очень опасное приключение, в ходе которого могут погибнуть люди. Ведь мы не живем в сказке, где всегда и все прекрасно. Даже в научной сфере время от времени возникают ужасные катастрофы и организаторы полетов прекрасно об этом знают. Относительно недавно о рискованности полета на Марс объявил даже сам Илон Маск, причем он будто бы относится к этому как к чему-то, само собой разумеющемуся. Если подумать, то дела действительно обстоят именно так.

Световая скорость

Кроме времени, выражаемого в днях, перелет космического корабля между объектами Солнечной системы можно рассчитать в световых годах. Сколько будет перемещаться аппарат от Земли до Марса? Стоит детальнее рассмотреть этот вопрос.

Из школьной программы по физике известно, что скорость света примерно составляет 186 000 миль/сек (299 000 км/сек.). Чисто гипотетически, можно сделать следующие выводы:

  • при максимальной близости Марса и Земли лучи, которые отразятся от красной планеты, достигнут поверхности Земли через 3 минуты;
  • при сближении планет в центральной точке это произойдет за 13 минут;
  • если по максимуму отдалить планеты друг от друга, луч достигнет Земли через 22 минуты.

На заметку! Выражение «перемещаться со скоростью света» не зря означает большую скорость, ведь световые потоки способны проходить огромные расстояния за сравнительно короткое время. Для понимания человека это колоссальная быстрота.

Расстояния в астрономии определяются в световых годах. Один световой год составляет 9 460 528 177 426,82 км. Это практически 9,5 триллиона км. Научные деятели не теряют надежды на то, что когда-нибудь технический прогресс даст возможность достичь данного скоростного предела. Но пока световой год используется для измерения расстояний между космическими объектами, поскольку значения там, действительно, колоссальные.

Скорость полета, и от чего она зависит

Раз в два года расстояние между Марсом и Землей максимально сокращается. Дело в том, что марсианский год почти в два раза длиннее земного, поэтому, вращаясь по орбите, которая в два раза больше земной, Марс то приближается к нам, то отдаляется. Время, когда “красная планета” находится ближе всего к Земле — самое оптимальное для высадки.

При скорости, которую могут развивать современные ракеты, добраться до Марса можно всего за 115 дней, но не все так просто: на практике полет может занять до 300 дней. Дело в том, что для увеличения скорости необходимо гораздо больше топлива, следовательно, и космический корабль, который будет это топливо перевозить, должен быть просто гигантских размеров.

Ученые продолжают работать над проблемой увеличения скорости и экономии топлива, но на данный момент новые разработки еще не внедрены. Уменьшение времени полета — это крайне важная задача не только для сокращения расходов на топливо и минимизации негативного влияния на окружающую среду, но и для сохранения здоровья астронавтов.

Даже для человека, не имеющего соответствующего образования, очевидно, что Космос — далеко не самая дружелюбная среда. Чем дольше астронавт пребывает на его просторах, тем сильнее он страдает от облучения, что может серьезно отразиться на здоровье. Поэтому проблема увеличения скорости полета крайне актуальна для дальнейших исследований Космоса.